Theory of Hardy's Z-Function (BOK)

Aleksandar Ivic

799,00 79900
Sendes vanligvis innen 5-15 dager
Hardy's Z-function, related to the Riemann zeta-function zeta(s), was originally utilised by G. H. Hardy to show that zeta(s) has infinitely many zeros of the form 1/2+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line 1/2+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of zeta(s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.

Produktfakta

Språk Engelsk Engelsk Innbinding Innbundet
Utgitt 2012 Forfatter Aleksandar Ivic
Forlag
CAMBRIDGE UNIVERSITY PRESS
ISBN 9781107028838
Antall sider 264 Dimensjoner 15,9cm x 23,7cm x 1,9cm
Vekt 499 gram Leverandør Bertram Trading Ltd